Explosive Mixtures Detonating at Low Velocity

Andrzej Maranda and Stanisław Cudziło*

Military University of Technology, Kaliskiego 2 Str., 00-908 Warsaw 49 (Poland)

Summary

Same explosive mixtures detonating at a low velocity and not containing high explosives were experimentally investigated. As a system providing detonation capability, a mixture of ammonium nitrate and powdered aluminium was employed. Glass or urea-formaldehyde resin beads or lead oxides were used to reduce detonation parameters. Detonation velocity and critical diameter were measured for mixtures differentiated in composition and density. As a result of the investigation, a number of explosives were worked out which are characterized by the capability of stable detonation at a very low velocity (below 1000 m/s) and simultaneously, some of them have a relatively high density (even over 2 g/cm^3). An attempt of physical and chemical interpretation of the results obtained is also included.

1. Introduction

Explosives that detonate at a low velocity are used in mining industry to excavate block deposits as well as in some methods of high-energy treatment of metals such as cladding with lead or fixing of tubes to sieve bottoms of heat exchangers. Within the range of real density, most molecular explosives are characterized by high detonation parameters. They can be lowered by addition of some amount of inert substances having low bulk density^(1,2). Low detonation parameters are also typical for ammonium nitrate explosives sensitized by nitric esters and containing a lot of sodium chloride. However, the presence of highly sensitive explosives in the mixtures can be dangerous, especially if they are used outside of a mining plant.

In order to work out new explosive mixtures characterized by low detonation characteristics, many tests were carried out with some types of formulations not containing high explosives. Their common feature was the application of mixtures of ammonium nitrate and aluminium powder as a system providing the capability of detonation. The use of flaked aluminium assured small critical diameter of the explosives^(3–5). Additionally, lead oxides or substances characterized by very low bulk density were used to reduce the detonation velocity.

2. Experiments and Results

The explosive mixtures were prepared from commercial grade ingredients: crystalline ammonium nitrate (particle

size smaller than 800 μ m), flaked aluminium (size reduction below 75 μ m), urea-formaldehyde resin balloons (bulk density 0.08 g/cm³), glass beads (bulk density 0.37 g/cm³ and dimension smaller than 125 μ m), colloidal-sized silicon dioxide (bulk density 0.06 g/cm³) and lead oxides (PbO₂ or Pb₃O₄, particle size below 200 μ m). The explosives were mixed in 2 kg batches and cartridged into different paper shells. The charges were then used to measure the detonation velocity and the critical diameter. Both of the parameters can be used as a criterion of selection of explosives for specific blasting engineering.

The mean values of the detonation velocity were measured with short circuit sensors in charges (18 or 25 mm in diameter) placed into paper tubes. Conical and telescopic charges were employed to determine the critical diameter of detonation. The composition of explosives and the measurement results are given in Tables 1–6. All results are from a single batch of explosive with each value being an average of three experimental results. The average error for any single datum of detonation velocity was not higher than ± 100 m/s.

3. Discussion and Data Analysis

Several aspects of the data were unusual. The detonation velocity was very low. However, the critical diameter was relatively small, especially when the mixtures contained a small amount of additives $(2-5\% \text{ of glass beads}, \text{SiO}_2 \text{ or urea-formaldehyde resin balloons})$. An increase in contents of additives caused a decrease in the density and consequently led to a reduction in the detonation velocity and to an increase in the critical diameter. Every one-percent addition of glass beads lowered the detonation velocity by 20-60 m/s and increased the critical diameter by a fraction of millimeter. The higher the contents of glass beads were the higher were the changes of the parameters (Tables 1 and 2).

In the case of mixtures containing urea-formaldehyde resin balloons, there were similar changes of the parameters but the detonation velocity was much higher (Table 3). This fact indicated that the resin behaved as an additional fuel and reacted with the decomposition products of the oxidizer (NH₄NO₃). The observed increase in the explosive performance could only be caused by an energy release as a result of the reactions. Glass beads and silica, on the other hand, consist mainly of chemically inert silicon dioxide. Therefore, they absorbed entirely the energy in the detonation wave and

^{*}Corresponding author; e-mail: cudzilo@wul.wat.waw.pl

 Table 1. Detonation Parameters of Mixtures Containing 2, 3, and 4% of Al and Glass Beads

Formulations	1	2	3	4	5	6	7	8
Composition [%]								
Flaked aluminium	2	2	2	3	3	3	4	4
Ammonium nitrate	96	91	88	92	87	82	92	89
Glass beads	2	7	10	5	10	15	4	7
Detonation parameter								
Density [g/cm ³]	0.97	0.90	0.85	0.99	0.90	0.85	0.93	0.92
Critical diameter [mm]	10	12	14	11	15	18	9	9
Detonation velocity [m/s]								
Diameter: 18 mm	1630	1400	1220	1560	1280	1060	1720	1660

Table 2. Detonation Parameters of Mixtures Containing 5, 6, and 10% of Al and Glass Beads

Formulations	9	10	11	12	13	14	15	16
Composition [%]								
Flaked aluminium	5	5	5	6	6	6	10	10
Ammonium nitrate	92	89	86	89	84	79	85	80
Glass beads	3	6	9	5	10	15	5	10
Detonation parameter								
Density [g/cm ³]	0.94	0.89	0.82	0.96	0.93	0.85	0.98	0.90
Critical diameter [mm]	9	9	11	10	12	16	10	19
Detonation velocity [m/s]								
Diameter: 18 mm	1860	1700	1600	1600	1490	1150	1650	_

Table 3. Detonation Parameters of Mixtures Containing 3, 6, and 10% of Al and Urea-Formaldehyde Resin Balloons

Formulations	17	18	19	20	21	22	23	24	25
Composition [%]									
Flaked aluminium	3	3	3	6	6	6	10	10	10
Ammonium nitrate	92	87	82	89	84	79	85	80	75
Resin balloons	5	10	15	5	10	15	5	10	15
Detonation parameter									
Density [g/cm ³]	0.84	0.68	0.54	0.83	0.67	0.58	0.62	0.54	0.45
Critical diameter [mm]	8	10	16	8	12	18	8	12	16
Detonation velocity [m/s]									
Diameter: 25 mm	2230	1880	1570	2450	2120	1810	2430	2290	1990
Diameter: 18 mm	1930	1610	-	2300	1930	_	2160	1900	_

were finally responsible for the relatively low detonation characteristics of explosives containing those components. Furthermore, colloidal SiO_2 which has a very low bulk density allowed to prepare explosive mixtures with low density and stably detonating at a low velocity (Table 4).

An addition of lead oxides to the mixtures of ammonium nitrate and aluminium powder led to an increase in their density and to a decrease in the detonation velocity (Tables 5 and 6). Stable propagation occurred at a low velocity, in small diameters, even for the case of very large contents of lead oxides. The results obtained enabled us to advance a hypothesis that each of both oxides can react in the
 Table 4. Detonation Parameters of Mixtures Containing 3, or 6% of Al and Colloidal Silicon Dioxide

Formulations	26	27	28	30
Composition [%]				
Flaked aluminium	3	3	6	6
Ammonium nitrate	92	89.5	89	86.5
Silicon dioxide	5	7.5	5	7.5
Detonation parameter				
Density $[g/cm^3]$	0.46	0.40	0.46	0.37
Critical diameter [mm]	12	17	12	15
Detonation velocity [m/s]				
Diameter: 25 mm	1700	990	2230	1450

Table 5. Detonation Parameters of Mixtures Containing PbO₂

Formulations	31	32	33	34	35	36	37	38	39
Composition [%]									
Flaked aluminium	1	1	1	6	6	6	6	6	6
Ammonium nitrate	79	59	39	74	54	34	14	9	4
Lead dioxide, PbO ₂	20	40	60	20	40	60	80	85	90
Detonation parameter									
Density [g/cm ³]	0.89	1.11	1.32	0.87	1.00	1.34	1.80	2.15	2.43
Detonation velocity [m/s]									
Diameter: 25 mm	1130	890	failure	2160	1950	1600	1040	840	failure

Table 6. Detonation Parameters of Mixtures Containing Pb₃O₄

Formulations	41	42	43	44	45	46	47	48
Composition [%]								
Flaked aluminium	1	1	1	1	6	6	6	6
Ammonium nitrate	89	79	74	69	74	34	14	4
Pb ₃ O ₄	10	20	25	30	20	60	80	90
Detonation parameter								
Density [g/cm ³]	0.76	0.81	0.86	0.91	0.88	1.17	1.40	1.48
Detonation velocity [m/s]								
Diameter: 25 mm	1010	880	810	failure	2100	1320	810	failure

detonation wave. That is why the mixtures were able to detonate even when the contents of PbO₂ or Pb₃O₄ were very high—up to 85%. Due to the low decomposition temperature of lead dioxide (290 °C⁽⁶⁾), it can be incorporated into the explosives in a higher amount than Pb₃O₄ (decomposition at 500 °C). But the most important is the fact that in this way explosives can be prepared which stably detonate at a velocity below 1000 m/s (formulations 32, 38, 42, 43, 47) and at the same time can have relatively high density—even over 2 g/cm³ (formulation 38).

4. Conclusion

A wide variety of explosive mixtures has been developed. They are characterized by the capability of stable detonation at low velocity (in small diameters) and for that reason can be used for cladding with thin sheets of metal (also with lead) and for fixing of tubes to sieve bottoms of heat exchangers.

Urea-formaldehyde resin and lead oxides (PbO_2 and Pb_3O_4) were found to be chemically active in the detonation wave of aluminized ammonium nitrate explosives.

The mixtures containing lead oxides were able to detonate at a velocity below 1000 m/s. Simultaneously some of them have a relatively high density—even over 2 g/cm^3 .

5. References

- K. K. Shvedov, A. J. Anistein, A. N. Jlin, "An Investigation on Detonation of Very Rarefied and Porous Explosives" (in Russian), *Fiz. Gor. Vzr.*, 16(3), (1980).
- (2) A. Maranda, J. Nowdczewski, B. Zygmunt, "A Crystalline Explosive—Hexosil" (in Polish), *Biul. WAT*, 25(8), (1976).
- (3) A. Maranda, "Research on the Process of Detonation of Explosive Mixtures of the Oxidizer Fuel Type Containing Aluminium Powder", *Propellants, Explosives, Pyrotechnics*, 15, 161–165 (1990).
- (4) A. Maranda, A. Poplinski, E. Włodarczyk, "An Investigation on Detonation Characteristics of Ammonium Nitrate—Aluminium Powder Mixtures" (in Polish), *Mech. Teoret. Stos.*, 27(3), (1989).
- (5) A. Maranda, "An Investigation on Detonation Parameters of Ammonium Nitrate—Aluminium Powder Mixtures" (in Polish), WAT, Warsaw 1989.
- (6) V. P. Glushko (ed), "Thermodynamical Properties of Individual Substances" (in Russian), Moscow 1978–1980.

(Received December 10, 2000; Ms 2000/048)